Нестандартные задачи по математике для 3 класса. Задачи по математике 3 класс. 




Нестандартные задачи по математике для 3 класса.



Задача 1

Сколько может быть трехзначных чисел все цифры, которых это 1, 2 или 3.

    Решение:
  • Первым может быть любое из этих 3-цифр на второе тоже, следовательно, два первых места могут быть заняты девятью способами: 11, 12, 13, 21, 22, 23, 31, 32, 33. В каждом из вышеописанных случаев третье место можно занять любой из этих трех цифр. Следовательно, все число можно записать двадцатью семью различными вариантами от 111 до 333.
  • Короче данное решение можно выразить следующим образом: первой может быть любая из этих 3-х цифр, второй может быть любая из этих 3-х цифр, третей может быть любая из этих 3-х цифр. Поэтому этих чисел всего 3 * 3 * 3 = 27.
  • Ответ: 27.

Задача 2.

Оксана нашла один гриб, Катя – два, Наташа – три. Мама дала им 18 конфет и предложила разделить их по заслугам. Сколько конфет должна получить каждая девочка?

    Решение:
  • Наташа собрала половину всех грибов, поэтому она должна получить половину конфет - 9. Катя должна получить вдвое больше конфет, чем Оксана, потому что она собрала вдвое больше чем Оксана грибов, следовательно, Оксана должна получить 3 конфеты, а Катя 6.
  • Ответ: Наташа – 9, Катя – 6, Оксана – 3.



Задача 3.

На какое число нужно разделить разницу наибольшего трехзначного числа и наибольшего двухзначного числа, чтобы получить однозначное число?

    Решение:
  • (999 – 99) : 100 = 9
  • Ответ: 100.

Задача 4.

За 4 дня велосипедисты проехали 88км. Сколько километров они проехали в первый день, если каждый следующий день они проезжали на 2км. меньше чем в предыдущий?

    Решение:
  • За второй день велосипедисты проехали на 2км. меньше чем за первый, за третий на 4км., за четвертый на 6км меньше чем за первый. Если бы каждый день велосипедисты проезжали столько километров, сколько за первый день, то за четыре дня они бы проехали 88 + 2 + 4 + 6 =100км. Значит за первый день они проехали 100 : 4 = 25км.

Задача 5.

Улитка решила поползти по дереву вверх. За день она проползала шесть метров. А за ночь спускалась на четыре метра. За сколько она доползет до верхушки дерева, если высота этого дерева четырнадцать метров?

    Решение:
  • Утром второго дня он будет на высоте 6 – 4 = 2м. вечером на высоте 2 + 6 = 8м. Утром на третий день он будет на высоте 8 – 4 = 4м. вечером на высоте 4 + 6 = 10м. На четвертый день утром на высоте 10 – 4 = 6м. вечером на 6 + 6 = 12м. На пятый день на высоте 12 – 4 = 8м вечером 8 + 6 = 14м – высота нашего дерева.
  • Ответ: к концу пятого дня.

Задача 6.

Первого февраля 1999 года был понедельник. Каким днем недели было 1 марта 1999 года?

    Решение:
  • Сколько дней разделяет первое февраля 1999года и первое марта 1999года, учитывая, что 1999год не високосный, то это 28 дней? Далее смотрим какой день недели, если у нас был понедельник прибавляем 28 дней(ровно 4 недели), следовательно день также будет понедельник.
  • Ответ: понедельник.

Задача 7.

Запишите трехзначное число, у которого каждая последующая цифра больше предыдущей втрое.

    Решение:
  • Ответ: 139 единственное число, удовлетворяющее условиям задачи.